Add to Cart

Resonant Tunneling Diode Photonics

Devices and applications
Charlie Ironside, Bruno Romeira, Jose Figueiredo


This book brings together two broad themes that have generated a great deal of interest and excitement in the scientific and technical community in the last 100 years or so: quantum tunnelling and nonlinear dynamical systems. It applies these themes to nanostructured solid state heterostructures operating at room temperature to gain insight into novel photonic devices, systems and applications.

About Editors

Charlie Ironside is a professor in the Department of Physics and Astronomy at Curtin University, Australia. He received his PhD from Heriot-Watt University, and in 1998 he was appointed professor of quantum electronics at the University of Glasgow, UK. He has more than 30 years of experience in semiconductor optoelectronics research and microfabrication of photonic components. He is a Fellow of the IET, and the IOP, and senior member of IEEE. Along with hundreds of papers, he has co-authored five patents.

Bruno Romeira received a PhD (summa cum laude) in physics and a European PhD from the University of Algarve, Portugal, jointly with the University of Glasgow, UK, and the University of Seville, Spain, in 2012. His research cuts across several disciplines in applied physics and engineering, and includes semiconductor physics, quantum nanoelectronics, low-dimensional nanostructures, and nanophotonic and neuromorphic devices.

José Figueiredo received a BSc in physics (optics and electronics) and a MSc in optoelectronics and lasers from the Universidade do Porto, Portugal, in 1991 and 1995 respectively. He did his PhD work at the University of Glasgow, UK, on the optoelectronic properties of resonant tunnelling diodes, enrolled in a joint programme between the Universidade do Porto and the University of Glasgow. He then moved to the Universidade do Algarve. He joined the Physics Department of the Faculty of Sciences of the University of Lisbon in 2017. He is member of the CENTRA research unit, Portuguese Society of Optics and Photonics, European Microwave Association, Optical Society of America, and IEEE Photonics Society.

Table of Contents

Table of Contents

1.            Chapter 1: Introduction

1.1.        Introduction     

1.2.        Quantum tunneling devices       

1.3.        Negative differential conductance           

1.4.        Nonlinear dynamics       

1.5.        Optoelectronic integrated circuits (OEICs)           

1.6.        Outline

2.            Chapter 2: Resonant Tunnelling Diode – Electrical and Optical properties

2.1.        Introduction     

2.2.        Differential negative conductance           

2.2.1.    High-frequency response           

2.3.        Optical properties: Optical waveguiding, electroabsorption, photoconduction and lasers

2.3.1.    Optical waveguiding     

2.3.2.    Electroabsorption

2.3.3.    Photoconductivity and photodetection 

2.3.4.    Optical emission             

2.4.        Conclusions       

3.            Chapter 3: Resonant Tunnelling Diode – Electro-absorption Modulators 

3.1.        Introduction     

3.2.        Electro-optic and electro-absorption modulators             

3.2.1.    Electro-refraction modulators   

3.2.2.    Electro-absorption modulators (EAMs) 

3.3.        Resonant tunnelling diode EAM device 

3.4.        RTD-EAM operation principle     

3.5.        GaAs RTD-EAM operation at 900 nm       

3.5.1.    Device implementation and low frequency characterization         

3.5.2.    Optical modulation under applied external signals           

3.5.3.    Optical modulation enabled by self-sustained oscillations             

3.6.        InGaAlAs/InP RTD-EAM operation at 1550 nm   

3.6.1.    Device structure and low frequency characterization     

3.6.2.    RTD-EAM high frequency characterization           

3.7.        Conclusions       

4.            Chapter 4: Resonant Tunnelling Diode – Photo-detectors (RTD-PD)         

4.1.        Introduction     

4.2.        RTD-PD concept and principle of operation         

4.3.        RTD-PD implementation and characterization     

4.4.        Optical controlled high-frequency RTD-PD oscillators     

4.5.        Design guidelines of high photo-detection bandwidth RTD-PDs 

4.6.        Excitability detectors     

4.7.        Conclusions       

5.            Chapter 5: Resonant Tunnelling Diodes –Laser diodes (RTD-LD) (Charlie & Bruno)               

5.1.        Introduction     

5.2.        Hybrid RTD laser circuit 

5.2.1.    Model of the RTD-LD hybrid circuit         

5.3.        Integrated RTD laser circuit         

5.4.        Conclusions       

6.            Chapter 6: Nonlinear dynamics of RTD oscillators (Bruno)             

6.1.        Introduction     

6.2.        Photonic synchronisation and chaos       

6.2.1.    Injection locking             

6.2.2.    Period-adding bifurcation           

6.2.3.    Quasi-periodic route to chaos   

6.3.        Excitable spiking in neuromorphic photonic devices and systems

6.3.1.    Excitability (neuron-like) dynamics         

6.3.2.    Spiking and bursting dynamics   

6.3.1.    Bistable dynamics           

6.4.        Conclusions       

7.            Chapter 7: Resonant Tunnelling Diodes optoelectronic oscillators (RTD-OEO) (Bruno)       

7.1.        Introduction     

7.2.        Optoelectronic oscillator (OEO)

7.3.        Photonic integrated RTD-OEO   

7.3.1.    Single-optical fibre loop

7.3.2.    Dual-optical fibre loop 

7.3.3.    Time-delayed feedback Liénard oscillator model

7.4.        Regenerative RTD-OEO

7.5.        Conclusions       

8.            Conclusions       



Paperback ISBN: 9780750330220

Ebook ISBN: 9781643277431

DOI: 10.1088/2053-2571/ab3a9a

Publisher: Morgan & Claypool Publishers


« Back